Как решать периметр и площадь

Как решать периметр и площадь

a — длина
b — ширина
P — периметр
S — площадь
квадрат — определение
P = a + a + a + a; P = a · 4 — периметр квадрата
S = a · a; S = a² — площадь квадрата
прямоугольник — определение
P = a + b + a + b; P = 2a + 2b; P = (a + b) · 2 — периметр прямоугольника
S = a · b — площадь прямоугольника

Какой участок земли потребует большую ограду: прямоугольный размерами 32 м и 2 м или квадратный, имеющий ту же площадь?
Решение:
I. Прямоугольный участок
32 · 2 = 64 (м²) — S прямоугольного участка = 64 (м²)
(32 + 2) · 2 = 68 (см) — P прямоугольного участка = 68 (см)

II. Квадратный участок (имеющий площадь прямоугольного = 64 м²)
Если S квадрата = a · a, тогда, из формулы, узна́ем сторону квадратного участка S : a = a
(у квадрата все стороны равны, тогда a · a = S — таблицу умножения мы знаем, подберём значения a и заменим их — 8 · 8 = S или 8 · 8 = 64 или 64 = 8 · 8 или 64 : 8 = 8)
64 : 8 = 8 (м) — любая сторона квадратного участка = 8 (м)
8 · 4 = 32 (м) — периметр квадратного участка = 32 (м)

III. P прям. — P квадр. = разница периметров
68 — 32 = 36 (м) — разница периметров
Ответ: потребует большую ограду прямоугольный на 36 м.

Ребро куба равно 2 сантиметров. Найти площадь всех граней куба.
Решение:
Куб — многогранник, поверхность которого состоит из шести одинаковых по площади квадратов.
У куба 8 вершин, 12 рёбер, 6 граней (поверхностей).
Если S = a · a — площадь квадрата, тогда
S = (a · a) · 6 — площадь всех граней куба, из условия задачи a = 2, тогда S = 2 · 2 · 6
2 · 2 · 6 = 24 (см²)
Ответ: площадь всех граней куба равна 24 см²

Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.
Для решения потребуются формулы:
S = a · a; S = a² — площадь квадрата (у квадрата все стороны равны)
S = a · b — площадь прямоугольника (у прямоугольника противоположные стороны равны)
Далее всё очень просто:
Квадрат A.
S = a · a или a · a = S — формула площади квадрата, тогда
8 · 8 = 64 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
4 · 1 = 4 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь вырезанного прямоугольника
64 — 4 = 60
Ответ: площадь получившейся фигуры равна 60
Квадрат B.
S = a · a или a · a = S — формула площади квадрата, тогда
7 · 7 = 49 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
4 · 2 = 8 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь прямоугольника
49 — 8 = 41
Ответ: площадь получившейся фигуры равна 41
Квадрат C.
S = a · a или a · a = S — формула площади квадрата, тогда
7 · 7 = 49 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
5 · 1 = 5 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь прямоугольника
49 — 5 = 44
Ответ: площадь получившейся фигуры равна 44

Площадь одной клетки равна 1см.
Найдите площадь фигуры, изображённой на рисунке A.
Найдите площадь фигуры, изображённой на рисунке B.
Найдите площадь фигуры, изображённой на рисунке C.
Найдите площадь фигуры, изображённой на рисунке D.
Найдите площадь фигуры, изображённой на рисунке E.

Определение:
Неправильный четырехугольник – фигура, у которой стороны не равны и не параллельны.
Решение:
разобьём неправильные четырехугольники A, B, D на два прямоугольных треугольника и прямоугольник, а неправильные четырехугольники C, E на два прямоугольных треугольника и квадрат.
Применив формулы площади треугольника, квадрата и прямоугольника легко решим поставленную задачу
Фигура A
S = a · b — формула площади прямоугольника, тогда
3 · 4 = 12 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ ·1 · 5 = 2,5 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника
½ ·2 · 4 = 4 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры A
12 + 2,5 + 4 = 18,5 см²
Ответ: площадь фигуры A 18,5 см²
Фигура B
S = a · b — формула площади прямоугольника, тогда
5 · 1 = 5 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ ·6 · 5 = 15 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ ·1 · 1 = 0,5 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры B
5 + 15 + 0,5 = 18,5 см²
Ответ: площадь фигуры B 20,5 см²
Фигура C
S = a · a; S = a² — формула площади квадрата, тогда
5 · 5 = 25 см² — площадь квадрата a
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 6 = 3 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 5 = 2,5 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры C
25 + 3 + 2,5 = 30,5 см²
Ответ: площадь фигуры C 30,5 см²
Фигура D
S = a · b — формула площади прямоугольника, тогда
3 · 4 = 12 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ ·1 · 5 = 2,5 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ ·2 · 4 = 4 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры A
12 + 2,5 + 4 = 18,5 см²
Ответ: площадь фигуры A 18,5 см²
Фигура E
S = a · a; S = a² — формула площади квадрата, тогда
2 · 2 = 4 см² — площадь квадрата a
S = ½ · a · h — формула площади треугольника, тогда
½ · 3 · 4 = 6 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 2 · 2 = 2 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры E
4 + 6 + 2 = 12 см²
Ответ: площадь фигуры E 12 см²

Найдите площади и периметры фигурок. Сделайте вывод.

Определение:
Периметр — сумма длин всех сторон фигуры выраженый в милиметрах, сантиметрах, дециметрах, метрах и т.д.

Площадь фигуры — геометрическое понятие, размер плоской фигуры выраженый в мм², см², дм², м² и т.д.

Пусть каждая из сторон клетки равна 1 см, тогда
применив формулу площади квадрата S = a · a получим площадь одной клетки 1 · 1 = 1 см²

Фигура A — прямоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура A имеет четыре стороны, тогда
1 + 4 + 1 + 4 = 10 см — периметр фигуры.

Фигура B — квадрат состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура B имеет четыре стороны, тогда
2 + 2 + 2 + 2 = 8 см — периметр фигуры.

Фигура C — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура C имеет шесть сторон, тогда
3 + 1 + 2 + 1 + 2 + 1 = 10 см — периметр фигуры.

Фигура D — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура D имеет восемь сторон, тогда
1 + 1 + 2 + 1 + 1 + 1 + 2 + 1 = 10 см — периметр фигуры.

Фигура E — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура E имеет восемь сторон, тогда
1 + 1 + 1 + 3 + 1 + 1 + 1 + 1 = 10 см — периметр фигуры.
Вывод:
Фигуры A, B, C, D, E имеют одинаковую площадь, но наименьший периметр имеет квадрат.
У разных по форме плоских фигур, с одинаковой площадью, наименьший периметр всегда имеет квадрат.

Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (катет) b = 8 см
Найдём гипотенузу прямоугольного треугольника по формуле:
a² + b² = c²
6² + 8² = c²
6 • 6 + 8 • 8 = c²
36 + 64 = с²
с² = 36+64
с² = 100
с = 10
Найдём периметр прямоугольного треугольника по формуле:
p = a + b + c
p = 6 + 8 + 10 = 24
Ответ: периметр прямоугольника равен 24 см.

Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (гипотенуза) с = 10 см
Найдём гипотенузу прямоугольного треугольника по формуле:
a² + b² = c²
6² + b² = 10²
6 • 6 + b² = 10 • 10
36 + b² = 100
b² = 100 — 36
с² = 64
с = 8
Найдём периметр прямоугольного треугольника по формуле:
p = a + b + c
p = 6 + 8 + 10 = 24
Ответ: периметр прямоугольника равен 24 см.

Задачи на нахождение периметра и площади для 4 класса с ответами

Для решения задач на нахождения периметра и площади прямоугольников и квадратов необходимо освоить следующие основные формулы:

Формулы площади и периметра для квадрата

Читать еще:  Как сделать велосипед с мотором от бензопилы

P = a + a + a + a; P = a · 4 — периметр квадрата
S = a · a; S = a² — площадь квадрата

Формулы площади и периметра для прямоугольника

P = a + b + a + b; P = 2a + 2b;
P = (a + b) · 2 — периметр прямоугольника
S = a · b — площадь прямоугольника

Примеры решения задач разной сложности на нахождение периметра и площади

Каков периметр треугольника ABC?

Ответ: периметр треугольника равен 125 см.

Красный треугольник является равносторонним со стороной 23 сантиметров. Чему равен его периметр?

Ответ: Все три стороны равностороннего треугольника равны. Таким образом, его периметр равен 23 · 3 = 69 см.

Равнобедренный треугольник имеет периметр 37 сантиметров, а его основание имеет длину 9 сантиметров. Каждая из двух других сторон будет иметь длину _____ см.?

Ответ: Равнобедренный треугольник имеет две равные стороны. Сумма равных сторон будет 37 — 9 = 28 см. Значит, каждая из них будет равна 28 : 2 = 14 см.

У Тимы есть сад в форме квадрата со стороной 9 метров. Какова длина забора, который опоясывает сад?

Ответ: Все стороны квадрата равны. Длина забора P равна длине стороны умноженной на 4. P = 4 · 9 = 36 метров.

В прямоугольнике ABCD красная сторона составляет 18 см, а синяя сторона 12 см. Чему равен периметр прямоугольника?

Ответ: Периметр прямоугольника равен 60 см.

Длина прямоугольника 8 дм, ширина 7 дм. Найди его площадь?

Ответ: Площадь прямоугольника 56 м².

Площадь витрины квадратной формы 64м². Узнай ее периметр.

Ответ: Периметр витрины равен 32 м.

Длина прямоугольника 9 дм, ширина 7 см. Найдите его площадь.

Ответ: Площадь прямоугольника равна 630 см².

Парк имеет форму прямоугольника с длиной 24 метра и шириной 18 метров. Если на его сторонах надо посадить деревья с отступом в 2 метра друг от друга, то сколько нужно деревьев?

Каков периметр синей фигуры?

Ответ: Здесь есть два квадрата, у которых есть общая часть стороны. Так как сторона квадрата равна 10 см и часть стороны равна 8 см, то общая часть 2 см, а оставшаяся часть второго квадрата равна 8 см.
Периметр равен 10 + 10 + 8 + 10 + 10 + 10 + 8 + 10 = 76 см.

Два прямоугольных участка имеют одинаковую площадь. Длина первого — 48 м, а ширина 30 м. Чему равна длина второго участка, если его ширина на 6 м больше ширины первого участка?

Ответ: Длина второго участка 40 м.

Найди периметр квадрата со стороной 8 см.

Ответ: Периметр квадрата 32 см.

Сторона квадрата 6 см. Найди длину прямоугольника с таким же периметром и шириной 3 см.

6 · 4 = 24 (см) -находим периметр квадрата
3 + 3 = 6 (см) -сумма ширины прямоугольника
24 — 6 = 18 (см)- сумма двух длин прямоугольника
18 : 2 = 9 (см)

Ответ: Длина прямоугольника 9 см.

Длина бассейна прямоугольной формы 15 м. Найди периметр бассейна, если его площадь 120 м2.

120:15=8 (м)- ширина бассейна
(8+15)·2= 46 (м)

Ответ: Периметр бассейна 46 метров

Периметр квадрата 8 см. Из трех таких квадратов сложили прямоугольник. Найди периметр получившегося прямоугольника.

8:4=2 (см)- сторона квадрата
2+2+2+2+2+2+2+2=16(см)

Ответ: Периметр прямоугольника 16 см.

Ученику нужно было начертить прямоугольник со сторонами 5 см и 9 см, а он начертил его со сторонами 6 и 8 см. На сколько см² он ошибся?

5 · 9 = 45 (см²)
6 · 8 = 48 (см²)
48 — 45 = 3 (см²)

Ответ: Ученик ошибся на 3 см²

Ширина окна прямоугольной формы 4 дм, а длина в 2 раза больше. Вычисли площадь окна.

4·2=8 (дм) -длина окна
8·4=32 (дм²)

Ответ: Площадь окна 32 дм²

Один прямоугольный участок имеет длину 36 м, а ширину 20 м. Найдите ширину другого участка с такой же площадью, если его длина на 6 м меньше длины первого участка.

Ответ: Ширина другого участка 24 м.

У какой фигуры площадь больше и на сколько: у квадрата со стороной 4 см или у прямоугольника со сторонами 2 см и 6 см?

Ответ: Площадь квадрата больше на 4 см.

Длина стороны квадрата 6 см. Узнайте площадь и периметр квадрата.

Ответ: Площадь квадрата 36 см², периметр квадрата 24 см.

У прямоугольника длина 7 см, ширина 5 см. Узнайте площадь и периметр прямоугольника.

Ответ: Площадь прямоугольника 35 м², периметр прямоугольника 24 см.

Сторона клумбы квадратной формы 8 м. 7/16 всей площади клумбы засажено ромашками, а остальная площадь – незабудками. На какой площади клумбы посажены незабудки?

1) 8 ∙ 8 = 64 (площадь клумбы)
2) 64 : 16 = 4(1/16 клумбы)
3) 4 ∙ 7 = 28 (плошадь клумбы засаженая ромашками)
4) 64 – 28 = 36

Ответ: Незабудками засажено 36 м².

Длина прямоугольника 6 см. Чему равна его площадь, если периметр составляет 18 см?

1) 6 ∙ 2 = 12
2) 18 – 12 = 6
3) 6 : 2 = 3 (ширина прямоугольника)
4) 3 ∙ 6 = 18

Ответ: Площадь прямоугольника 18 м².

Площадь прямоугольного стола 4800 кв см. Его ширина 60 см. Чему равен его периметр?

1) 4800 : 60 = 80 (длина стола)
2) 60 ∙ 2 = 120 см
3) 80 ∙ 2 = 160 см
4) 120 + 160 = 280 см

Ответ: Периметр стола 280 см.

Периметр прямоугольника 40 см. Одна сторона 5 см. Чему равна его площадь?

1) 5 ∙ 2 = 10
2) 40 – 10 = 30
3) 30 : 2 = 15 (другая сторона прямоугольника)
4) 5 ∙ 15 = 75

Ответ: Площадь прямоугольника 75 см².

Площадь квадрата 49 кВ дм. Узнайте его периметр.

1) 49 : 7 = 7 (сторона квадрата)
2) 7 ∙ 4 = 28 (периметр квадрата)

Ответ: Периметр квадрата равен 28 дм.

Ширина окна прямоугольной формы 4 дм, а длина в 2 раза больше. Вычислите площадь окна.

1) 4 ∙ 2 = 8 (длина окна)
2) 4 ∙ 8 = 32

Ответ: Площадь окна равна 32 м².

Длина участка земли 54 м. ширина — 48 м. 5/9 площади засажено картофелем. Остальная часть участка – капустой. Какая площадь засажена капустой?

1) 54 ∙ 48 = 2592 (площадь участка земли)
2) 2592 : 9 = 288 (1/9 площади)
3) 288 ∙ 5 = 1440 (5/9 площади)
4) 2592 – 1440 = 1152

Ответ: Капустой засадили 1152 м².

Найди периметр квадрата со стороной 16 см.

Ответ: Периметр квадрата 64 см.

Найди длину прямоугольника с помощью уравнения, если его ширина 7 см, а периметр равен 40 см.

где a — длина = ?, b — ширина = 7 см, P — периметр = 40 см.

(а + 7) · 2 = 40
2а + 14 = 40
2а = 40 — 14
2а = 26
а = 26 : 2
а = 13

Ответ: Длина прямоугольника 13 см.

Найди ширину прямоугольника, если его длина 10 см, а периметр равен 30 см.

Ответ: Ширина прямоугольника 5 см.

Периметр квадрата 24 см. Найди его площадь.

24 : 4 = 6 (см)
6 · 6 = 36 (см²)

Ответ: Площадь квадрата 36 см².

Периметр прямоугольника 36 см. Длина его 4 см. Найди площадь прямоугольника.

Ответ: Площадь прямоугольника 56 см².

Площадь прямоугольника 40 см². Ширина его 4 см. Чему равен периметр прямоугольника?

40 : 4 = 10 (см)
(10 + 4) · 2 = 28 (см)

Ответ: Периметр прямоугольника 28 см.

Ребро куба равно 2 сантиметров. Найти площадь всех граней куба.

Куб — многогранник, поверхность которого состоит из шести одинаковых по площади квадратов.

У куба 8 вершин, 12 рёбер, 6 граней (поверхностей).

Если S = a · a — площадь квадрата, тогда
S = (a · a) · 6 — площадь всех граней куба, из условия задачи a = 2, тогда S = 2 · 2 · 6
2 · 2 · 6 = 24 (см²)

Ответ: Площадь всех граней куба равна 24 см².

Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.

Ответ: Площадь получившейся фигуры равна 44.

Площадь одной клетки равна 1см.

  • Найдите площадь фигуры, изображённой на рисунке A.
  • Найдите площадь фигуры, изображённой на рисунке B.
  • Найдите площадь фигуры, изображённой на рисунке C.
  • Найдите площадь фигуры, изображённой на рисунке D.
  • Найдите площадь фигуры, изображённой на рисунке E.

Ответ: Площадь фигуры A 18,5 см², площадь фигуры B 20,5 см², площадь фигуры C 30,5 см², площадь фигуры A 18,5 см², площадь фигуры E 12 см².

Найдите площади и периметры фигурок. Сделайте вывод.

Ответ: Пусть каждая из сторон клетки равна 1 см, тогда применив формулу площади квадрата S = a · a получим площадь одной клетки 1 · 1 = 1 см²

Фигура A — прямоугольник состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура A имеет четыре стороны, тогда 1 + 4 + 1 + 4 = 10 см — периметр фигуры.

Читать еще:  Как самому отремонтировать зонт автомат

Фигура B — квадрат состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура B имеет четыре стороны, тогда 2 + 2 + 2 + 2 = 8 см — периметр фигуры.

Фигура C — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура C имеет шесть сторон, тогда 3 + 1 + 2 + 1 + 2 + 1 = 10 см — периметр фигуры.

Фигура D — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура D имеет восемь сторон, тогда 1 + 1 + 2 + 1 + 1 + 1 + 2 + 1 = 10 см — периметр фигуры.

Фигура E — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда 1 · 4 = 4 см² — площадь фигуры; фигура E имеет восемь сторон, тогда 1 + 1 + 1 + 3 + 1 + 1 + 1 + 1 = 10 см — периметр фигуры.

Вывод: Фигуры A, B, C, D, E имеют одинаковую площадь, но наименьший периметр имеет квадрат. У разных по форме плоских фигур, с одинаковой площадью, наименьший периметр всегда имеет квадрат.

Квадрат в данной фигуре имеет периметр 24 см. Синий треугольник — периметр 15 см. Каков периметр красной фигуры?

Ответ: Периметр красной фигуры равен 27 см.

Периметр каждого из зеленых квадратов 12 см. Каков периметр большого квадрата?

Ответ: Периметр равен 36 см.

Площадь прямоугольника 72 см2. Какова длина и ширина прямоугольника, если ширина в 2 раза меньше, чем его длина?

Ответ: Длина прямоугольника равна 12 см. а ширина — 6 см.

Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (катет) b = 8 см.

Ответ: Периметр прямоугольника равен 24 см.

Периметр красного квадрата равен 16см. Красные треугольники равносторонние. Каково расстояние проползет улитка по пути ABCDFGHA?

Ответ: Расстояние пройденное улиткой будет равно 28 см.

В зале длиной 12 м и шириной 8 м надо покрыть пол квадратными плитками. Сколько потребуется плиток, если площадь каждой плитки 4 дм2?

Каков периметр зеленой зоны, если ширина синей зоны равна 3 метра?

Как решать периметр и площадь

a — длина
b — ширина
P — периметр
S — площадь
квадрат — определение
P = a + a + a + a; P = a · 4 — периметр квадрата
S = a · a; S = a² — площадь квадрата
прямоугольник — определение
P = a + b + a + b; P = 2a + 2b; P = (a + b) · 2 — периметр прямоугольника
S = a · b — площадь прямоугольника

Какой участок земли потребует большую ограду: прямоугольный размерами 32 м и 2 м или квадратный, имеющий ту же площадь?
Решение:
I. Прямоугольный участок
32 · 2 = 64 (м²) — S прямоугольного участка = 64 (м²)
(32 + 2) · 2 = 68 (см) — P прямоугольного участка = 68 (см)

II. Квадратный участок (имеющий площадь прямоугольного = 64 м²)
Если S квадрата = a · a, тогда, из формулы, узна́ем сторону квадратного участка S : a = a
(у квадрата все стороны равны, тогда a · a = S — таблицу умножения мы знаем, подберём значения a и заменим их — 8 · 8 = S или 8 · 8 = 64 или 64 = 8 · 8 или 64 : 8 = 8)
64 : 8 = 8 (м) — любая сторона квадратного участка = 8 (м)
8 · 4 = 32 (м) — периметр квадратного участка = 32 (м)

III. P прям. — P квадр. = разница периметров
68 — 32 = 36 (м) — разница периметров
Ответ: потребует большую ограду прямоугольный на 36 м.

Ребро куба равно 2 сантиметров. Найти площадь всех граней куба.
Решение:
Куб — многогранник, поверхность которого состоит из шести одинаковых по площади квадратов.
У куба 8 вершин, 12 рёбер, 6 граней (поверхностей).
Если S = a · a — площадь квадрата, тогда
S = (a · a) · 6 — площадь всех граней куба, из условия задачи a = 2, тогда S = 2 · 2 · 6
2 · 2 · 6 = 24 (см²)
Ответ: площадь всех граней куба равна 24 см²

Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.
Для решения потребуются формулы:
S = a · a; S = a² — площадь квадрата (у квадрата все стороны равны)
S = a · b — площадь прямоугольника (у прямоугольника противоположные стороны равны)
Далее всё очень просто:
Квадрат A.
S = a · a или a · a = S — формула площади квадрата, тогда
8 · 8 = 64 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
4 · 1 = 4 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь вырезанного прямоугольника
64 — 4 = 60
Ответ: площадь получившейся фигуры равна 60
Квадрат B.
S = a · a или a · a = S — формула площади квадрата, тогда
7 · 7 = 49 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
4 · 2 = 8 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь прямоугольника
49 — 8 = 41
Ответ: площадь получившейся фигуры равна 41
Квадрат C.
S = a · a или a · a = S — формула площади квадрата, тогда
7 · 7 = 49 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
5 · 1 = 5 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь прямоугольника
49 — 5 = 44
Ответ: площадь получившейся фигуры равна 44

Площадь одной клетки равна 1см.
Найдите площадь фигуры, изображённой на рисунке A.
Найдите площадь фигуры, изображённой на рисунке B.
Найдите площадь фигуры, изображённой на рисунке C.
Найдите площадь фигуры, изображённой на рисунке D.
Найдите площадь фигуры, изображённой на рисунке E.

Определение:
Неправильный четырехугольник – фигура, у которой стороны не равны и не параллельны.
Решение:
разобьём неправильные четырехугольники A, B, D на два прямоугольных треугольника и прямоугольник, а неправильные четырехугольники C, E на два прямоугольных треугольника и квадрат.
Применив формулы площади треугольника, квадрата и прямоугольника легко решим поставленную задачу
Фигура A
S = a · b — формула площади прямоугольника, тогда
3 · 4 = 12 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ ·1 · 5 = 2,5 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника
½ ·2 · 4 = 4 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры A
12 + 2,5 + 4 = 18,5 см²
Ответ: площадь фигуры A 18,5 см²
Фигура B
S = a · b — формула площади прямоугольника, тогда
5 · 1 = 5 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ ·6 · 5 = 15 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ ·1 · 1 = 0,5 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры B
5 + 15 + 0,5 = 18,5 см²
Ответ: площадь фигуры B 20,5 см²
Фигура C
S = a · a; S = a² — формула площади квадрата, тогда
5 · 5 = 25 см² — площадь квадрата a
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 6 = 3 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 5 = 2,5 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры C
25 + 3 + 2,5 = 30,5 см²
Ответ: площадь фигуры C 30,5 см²
Фигура D
S = a · b — формула площади прямоугольника, тогда
3 · 4 = 12 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ ·1 · 5 = 2,5 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ ·2 · 4 = 4 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры A
12 + 2,5 + 4 = 18,5 см²
Ответ: площадь фигуры A 18,5 см²
Фигура E
S = a · a; S = a² — формула площади квадрата, тогда
2 · 2 = 4 см² — площадь квадрата a
S = ½ · a · h — формула площади треугольника, тогда
½ · 3 · 4 = 6 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 2 · 2 = 2 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры E
4 + 6 + 2 = 12 см²
Ответ: площадь фигуры E 12 см²

Найдите площади и периметры фигурок. Сделайте вывод.

Определение:
Периметр — сумма длин всех сторон фигуры выраженый в милиметрах, сантиметрах, дециметрах, метрах и т.д.

Площадь фигуры — геометрическое понятие, размер плоской фигуры выраженый в мм², см², дм², м² и т.д.

Пусть каждая из сторон клетки равна 1 см, тогда
применив формулу площади квадрата S = a · a получим площадь одной клетки 1 · 1 = 1 см²

Фигура A — прямоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура A имеет четыре стороны, тогда
1 + 4 + 1 + 4 = 10 см — периметр фигуры.

Читать еще:  Как сделать невидимой трещину на стекле

Фигура B — квадрат состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура B имеет четыре стороны, тогда
2 + 2 + 2 + 2 = 8 см — периметр фигуры.

Фигура C — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура C имеет шесть сторон, тогда
3 + 1 + 2 + 1 + 2 + 1 = 10 см — периметр фигуры.

Фигура D — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура D имеет восемь сторон, тогда
1 + 1 + 2 + 1 + 1 + 1 + 2 + 1 = 10 см — периметр фигуры.

Фигура E — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура E имеет восемь сторон, тогда
1 + 1 + 1 + 3 + 1 + 1 + 1 + 1 = 10 см — периметр фигуры.
Вывод:
Фигуры A, B, C, D, E имеют одинаковую площадь, но наименьший периметр имеет квадрат.
У разных по форме плоских фигур, с одинаковой площадью, наименьший периметр всегда имеет квадрат.

Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (катет) b = 8 см
Найдём гипотенузу прямоугольного треугольника по формуле:
a² + b² = c²
6² + 8² = c²
6 • 6 + 8 • 8 = c²
36 + 64 = с²
с² = 36+64
с² = 100
с = 10
Найдём периметр прямоугольного треугольника по формуле:
p = a + b + c
p = 6 + 8 + 10 = 24
Ответ: периметр прямоугольника равен 24 см.

Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (гипотенуза) с = 10 см
Найдём гипотенузу прямоугольного треугольника по формуле:
a² + b² = c²
6² + b² = 10²
6 • 6 + b² = 10 • 10
36 + b² = 100
b² = 100 — 36
с² = 64
с = 8
Найдём периметр прямоугольного треугольника по формуле:
p = a + b + c
p = 6 + 8 + 10 = 24
Ответ: периметр прямоугольника равен 24 см.

Площадь прямоугольника

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

Сегодня мы расскажем, как вычислять площадь прямоугольника.

Различные формулы вычисления площади (а их действительно немало), изучают в 8 классе школы.

Что такое площадь прямоугольника

Но для начала давайте все-таки дадим основные определения:

Прямоугольник – это геометрическая фигура, относящаяся к категории четырехугольников. Ее отличительная особенность в том, что противоположные стороны лежат на параллельных прямых (то есть параллельны друг другу) и равны.

А частным случаем прямоугольника, если у него все стороны равны между собой, является квадрат.

Площадь любой геометрической фигуры, формально говоря, это ее размер. Другими словами, размер того пространства, которое находится внутри границ фигуры.

В отношении четырехугольников применимо еще понятие «квадратура». С его помощью показывали, сколько квадратов вместится внутрь фигуры.

Собственно, отсюда и пошло современное обозначение площадей, когда речь идет о габаритах помещения или какой-то территории. Мы часто слышим «столько-то квадратных метров (миллиметров, сантиметров, километров)» или просто «столько-то квадратов».

Для площади геометрических фигур действуют определенные правила:

  1. Она не может быть отрицательной.
  2. У равных фигур всегда равные площади.
  3. Если две фигуры не пересекаются друг с другом, то их общая площадь равна сумме площадей фигур по отдельности.
  4. Если одна фигура вписана в другую, то ее площадь всегда меньше, чем у второй.

Обычно фигуры, которые имеют равные площади, называют «равновеликими».

Как найти площадь прямоугольника

Площадь прямоугольника вычисляется по очень простой формуле – надо лишь перемножить его стороны.

Возьмем, к примеру, такой прямоугольник:

Площадь геометрической фигуры обычно обозначается латинской буквой «S». И тогда формула для конкретного примера будет:

Например, если мы имеем прямоугольник со сторонами 2 и 3 сантиметра, то его площадь составит 2 * 3 = 6 сантиметров.

Но бывают случаи, когда неизвестны размеры сторон прямоугольника, а площадь вычислить все равно надо. Для этого существуют более сложные формулы.

Формула площади прямоугольника через периметр

Если известна длина только одной стороны, но известен еще и периметр прямоугольника.

В этом случае есть два варианта.

    Первый — вычислить длину второй стороны. Для этого надо вспомнить, что периметр (обозначается буквой «Р») считается по формуле:

И тогда обратные расчеты выглядят вот так:

Площадь прямоугольника через диагональ

Известна одна сторона и длина диагонали.

Тут опять же есть два варианта. В первом случае вычисляем длину второй стороны, используя теорему Пифагора.

Второй вариант – опять же сразу прибегнуть к готовой формуле:

Если известны длина диагоналей и угол между ними.

В этом случае стоит воспользоваться вот такой формулой:

Вот и все, что нужно знать о вычислении площади прямоугольников.

Что такое периметр и площадь

Периметр – это геометрический термин, который часто встречается в задачах. Чтобы понять, что такое периметр, следует нарисовать произвольный многоугольник и вооружиться линейкой. В переводе с греческого языка этот термин обозначает «измеряю вокруг».

Как вычислить периметр

Периметр обозначается латинской буквой P. Его можно измерить в сантиметрах, миллиметрах, метрах или дециметрах. Чтобы узнать периметр, следует измерить длину всех сторон многоугольника. Полученные значения нужно сложить. Итоговая сумма и станет ответом на вопрос: «Чему равен периметр многоугольника».

Периметр – это длина линий, которые ограничивают замкнутую фигуру (квадрат, прямоугольник, треугольник и др.).

Например, перед вами многоугольник со сторонами 10, 12, 13 и 11 см. Складываем вышеназванные числа (10+12+13+11) и получаем сумму 46. Это и есть периметр многоугольника.

Для удобства вычисления периметра в геометрии существует ряд формул. Каждая формула соответствует определенной фигуре.

Периметр и площадь квадрата

Это сумма его четырех сторон. Как мы знаем, все стороны квадрата имеют равный размер. Поэтому мы можем узнать периметр квадрата, умножив длину его стороны на четыре:

P= a*4

P= a+a+a+a

Например, перед нами квадрат со стороной 10 см.

Чтобы разобраться, что такое периметр и площадь, следует уяснить, что периметр вычисляет длину контура фигуры, а площадь – размер всей ее поверхности.

Чтобы узнать площадь квадрата, необходимо воспользоваться простой формулой:

S= a*a

S=a 2

S – это площадь, а – сторона квадрата.

Например, в задаче указано, что длина стороны квадрата составляет 10см.

Периметр и площадь прямоугольника

Стороны прямоугольника, находящиеся друг напротив друга и имеющие одинаковую длину, называются противолежащими. Это длина и ширина, они условно обозначаются латинскими буквами a и b. Формула для вычисления периметра прямоугольника выглядит так:

P= (a+b)*2

Используя эту формулу, мы сначала находим сумму ширины и длины, а затем умножаем ее на два.

Например, перед нами прямоугольник, имеющий длину 6 см и ширину 2 см.

Чтобы узнать площадь прямоугольника, следует длину умножить на ширину. Формула выглядит так:

S= a*b

Например, в условиях задачи сказано, что прямоугольник имеет длину 5 см и ширину 2см. Меняем буквы a и b на указанные числа.

Периметр круга (длина окружности)

Каждый круг имеет центр. Расстояние от центра круга до любой точки, расположенной на окружности, имеет название радиус круга. Часто ученики путают понятия «круг» и «окружность» и пытаются определить площадь окружности. Это серьезная ошибка. Следует разделить в голове понятия «круг» и «окружность». У окружности нет и не может быть площади, у нее есть только длина.

Чтобы найти периметр круга, следует вычислить длину его окружности. Существует формула для нахождения длины окружности:

L = 2πr

L= 2πd

L – длина окружности

π – это число «пи», математическая константа. Она равна отношению длины окружности к длине ее диаметра. Древнее название числа «пи» – лудольфово число. Это число иррационально, его десятичное представление после точки никогда не заканчивается.

π = 3.141 592 653 589 793 238 462 643 383 279 502

Для удобства вычислений обычно используют значение 3.14

R – это радиус окружности

D – Диаметр окружности

Итак, чтобы определить периметр круга, надо найти произведение радиуса и 2π. Если в задаче указан диаметр, то

Например, перед нами круг с радиусом 3 см. Найдем его периметр.

Отличие периметра от площади

Площадь – это размер поверхности фигуры, а периметр – это сумма ее границ.

Площадь всегда измеряется в квадратных единицах (см 2 , м 2 , мм 2 ). Периметр измеряется в единицах длины – в сантиметрах, миллиметрах, метрах, дециметрах.

Ссылка на основную публикацию
Adblock
detector